• 0 Posts
  • 10 Comments
Joined 9 months ago
cake
Cake day: February 11th, 2024

help-circle

  • A cool. That is a known wide spread design. This is a very high force, I’m impressed. But it will come at a cost of displacement correct? We aim to make brickets for cooking fuels and we have a lot of groundnut shells. These groundnut or peanut shells have a a lot lignin so it is possible with wetted mass (softening)and perhaps heating with fire (lignine becomes like a glue at 200degC). After that the brickets are sundried. The bricket shape could be like icehocky pucks or at least the shape to cook with.

    I think the wooden design is not that interesting to generate, but with a pellet release and refilling in one lever go (or two steps). That would be an interesting puzzle, yes?



  • For work in Malawi I am thinking of introducing a bricket press to make brickets from biomass. One person must pull a lever and a piston is pressing biomass into a cylinder and compresses it. The end of the stroke should be stronger and less fast. And with returning of the lever the pressed bricket or pellet is pushed out and new biomass is inserted. It can be an interesting design from scratch and nice context? It would be challenging to make it convenient for the person while large pressing forces are reached (5000n)




  • It is an interesting these technologies you compare. Yes, a sand battery is in potential capable of storing higher temperatures if the source can generate these temperatures. We also have to look at the heat transfer that will seperate both energy buffers if seen from an application point of view. The heat transfer in sand is very low and this intrinsic insulation of sand begins to be very interesting when larger volumes are used. Water has a problem that it needs an extra insulation layer and larger volumes would be less interesting in comparison. However water is faster in exchange and is interesting as smaller buffer with shorter bursts and intake of heat.