I do understand it differently, but I don’t think I misunderstood. I think what they meant is the physicist notation I’m (as a physicist) all too familiar with:
∫ f(x) dx = ∫ dx f(x)
In this case, because f(x) is the operand and ∫ dx the operator, it’s still uniquely defined.
Ok that’s some really interesting context I didn’t know. I’ve only ever seen it done the mathematician’s way with dx at the end. Learning physicists do it differently explains why the person in the post would want to discuss moving it around.
But I still think they have to mean “if dx can be treated as an operand”. Because “if dx can be treated as an operator” doesn’t make sense. It is an operator; there’s no need to comment on something being what it objectively is, and even less reason to pretend OOP’s partner was angry at this idea.
I do understand it differently, but I don’t think I misunderstood. I think what they meant is the physicist notation I’m (as a physicist) all too familiar with:
∫ f(x) dx = ∫ dx f(x)
In this case, because f(x) is the operand and ∫ dx the operator, it’s still uniquely defined.
Ok that’s some really interesting context I didn’t know. I’ve only ever seen it done the mathematician’s way with dx at the end. Learning physicists do it differently explains why the person in the post would want to discuss moving it around.
But I still think they have to mean “if dx can be treated as an operand”. Because “if dx can be treated as an operator” doesn’t make sense. It is an operator; there’s no need to comment on something being what it objectively is, and even less reason to pretend OOP’s partner was angry at this idea.